Scheduling Live Interactive Narratives with **Mixed-Integer Linear** Programming

Sasha Azad, Jingyang Xu, Haining Yu, Boyang "Albert" Li

Narrative Intelligence Group Disney Research, Pittsburgh

Outline

- Live interactive narratives
- Describe our problem formulation
- Live Interactive Narrative Scheduler
- Evaluate scalability and feasibility

Live Interactive Narratives (LINs)

multiple players participate in a predesigned narrative taking on fictional roles and interacting with real world objects and actors

Bad News 45 min narrative arc

€3

THE STORY SO FAR WHO WE ARE HOME GALLERY

9 mil. players Shared actors, props, locations

CONSPIRACY FOR GOOD

DENY MEMBERSHIP

The Story

REAL ARE ARE THE STORY SO FAR DENY MEMBERSHUR esearch

Challenges with Live Interactive Narratives

- High cost for authoring and reauthoring
- Time taken to complete events and interactions is inconsistent
- Authoring for consistent story beats or dramatic tension
- Mitigation of real world operating costs

People don't understand time. People assume that time is a strict progression of cause to effect, but actually from a non-linear, non-subjective viewpoint, it's more like a big ball of wibbly-wobbly, timey-wimey stuff.
— Doctor Who (Series 3, Episode 10 - Blink)

Dependency graph with temporal durations of events.

- Dependency graph with temporal durations of events.
- Contingent (or Uncontrollable) events

- Dependency graph with temporal durations of events.
- Contingent (or Uncontrollable) events
- Requirement (or Controllable) events

- Dependency graph with temporal durations of events.
- Contingent (or Uncontrollable) events
- Requirement (or Controllable) events
- Resource availability
 - Original available
 - Produced during an event
 - Consumed during an event

- Dependency graph with temporal durations of events.
- Contingent (or Uncontrollable) events
- Requirement (or Controllable) events
- Resource (original, produced, consumed)
- Plot choices!

Problem Statement

Given:

- Uncontrollable durations
- Constraints on controllable durations
- Constraints on resources
- Plot choices
- No peeking into the future
- **Change the duration**
 - Controllable time points
 - Any uncontrollable observed duration

Live Interactive Narratives Scheduling Problem (LINSP)

Live Interactive Narrative Scheduling Problem (LINSP)

- A LINSP problem is defined as a tuple

 $\langle V, E_{req}, E_{ctg}, U, L, A, b, R, M \rangle$

Temporal / Narrative Bounds

Formulated as a mixed integer linear programming constraint satisfaction problem

Resource Constraints Mutually Exclusive Constraints

Temporal Constraints

Shortest Path Constraints $l_{AC} \leq u_{AB} + l_{BC} \leq u_{AC}$ $l_{AC} \leq l_{AB} + u_{BC} \leq u_{AC}$ $u_{AC} \leq u_{AB} + u_{BC}$ $l_{AB} + l_{BC} \leq l_{AC}$

Precede Constraints $u_{AB} \leq l_{AC} - l_{BC}$ $l_{AB} \geq u_{AC} - u_{BC}$

Unordered Constraints

 $(l_{BC} < 0) \lor \begin{pmatrix} u_{AB} \leq l_{AC} - l_{BC} \\ l_{AB} \geq u_{AC} - u_{BC} \end{pmatrix}$

Wait Constraints for this triangle $w_{ABC} > u_{AC} - u_{BC}$

Wait Constraints for overall story

$$l_{AB} \ge min(l_{AX}, w_{ABX})$$

$$w_{ADX} \ge w_{ABX} - l_{DB}$$

$$(w_{ABX} < 0) \lor (w_{ADX} \ge w_{ABX} - l_{DB})$$

Sequencing for resources used

 $l_{S_i S_i} \ge u_{S_i E_i} - M * (1 - x_{i,j}), \quad i < j$ $\forall (i,j) \in \{0,\ldots,n+1\}^2$ $x_{i,j} + x_{j,i} \le 1,$ $x_{i,k} \ge x_{i,j} + x_{j,k} - 1, \ \forall (i,j,k) \in \{0,\ldots,n+1\}^3$

Live Interactive Narrative Temporal Constraints

Prior Work

Shortest Path Constraints

Follow Constraints

If activity A follows B

Precede Constraints

If activity A occurs before or at the same time as B

Unordered Constraints

If activity A and B are scheduled independently

Wait Constraints

Activity B must wait for either 1) a minimum time, or 2) till after a specific event A is over

Our Contribution

Plot Choice Constraints

Accounts for interactive narrative choices that may be mutually exclusive to each other

Resource Flow Constraints

Accounts for available resources flowing in a narrative

Resource Consumption Constraints

Accounts for activities that consume resources

The Great Dragon Adventure [120,180]

The Great Dragon Adventure

Requirement (controllable) Contingent (uncontrollable) Disnep Research

Dynamically Controllable!

Requirement (controllable) Contingent (uncontrollable) DISNEP Research

Simple Temporal Problem with Uncertainty

Simple Temporal Problem with Uncertainty

[120,180]

Disnep Research

Entire Ctg [10,90] interval is covered!

LIN Scheduler Plot Choices Constraint

We can allow individual plot choices and routes to not be feasible during a subset or interval of time of the original bound, as long as together they collectively cover the entire original interval.

Ctg₁₂ = **[10,90]** Total time taken by player for training Robbery route feasible for [50,90]

Every feasible plot choice interval is a node

Mutually Exclusive Plot Choices Constraints Ctg₁₂ = **[10,90]** Total time taken by player for training [10,90] Sword route feasible for [15,80] parent interval Magic route feasible for [10,70] $\mathcal{T}\mathbf{0}$ Robbery route feasible for [50,90] mutex Every feasible plot choice interval is a node T2 T3 interval [10,70] [15,80]

Ctg₁₂ = **[10,90]** Total time taken by player for training

- Parent Outward Edge —> Lower bound covered

- Parent Inward Edge —> Upper bound covered

- Parent Inward Edge -> Upper bound covered
- Cycle found must include parent and at least one mutex node

- Parent Inward Edge —> Upper bound covered
- Cycle found must include parent and at least one mutex node

Evaluation

- ▶ NP hard!
- Lack of datasets
- Larger temporal durations imply the solution space explodes
- Dragon Adventure:
 - Number of linear programming variables: 3148
 - Total evaluated combinations (solution space): 1,939,168
 - CPU Solver Time: 20.3 ms

Evaluation: Test Set I

Plot Graphs 77

- **Contingent Events** 50%
- **2 to 5** Narratives running simultaneously
- **Resources per event** 0-3
- **Total problems** 385

Solver:

Gurobi Solver

2.7 GHz Intel Xeon E5 12-Core 64GB RAM

140 160

119 Random Plot Graphs Varied % Contingent Events

Solver: Gurobi Solver 2.7 GHz Intel Xeon E5 12-Core 64GB RAM

Evaluation: Test Set III

- Narrative Optimisations Tested:
 - LINSP Feasibility Only
 - Maximise Player Choices
 - Maximise Flexibility for Authoring
 - Maximise Rigidity of Requirement Events
 - Reducing Wait Time

LINSP Evaluation: Test Set III

LINSP Feasibility
Increase Flexibility(
Maximize Rigidity(s)
Maximize Choices(s)

Conclusion

- Identify temporal challenges
- Formulation temporal uncertainty, resources, plot choices
- Evaluated scalability and feasibility
- Evaluated several optimisation functions

Future Work

- Dataset of narratives bound with temporal durations
- Real time execution
- Mediation

Live Interactive Narrative Scheduling Problem (LINSP) allows for a single designed narrative game to be scaled to account for temporal uncertainty, resources, multiple players and multiple simultaneous instances easily!

sasha.azad@ncsu.edu

Thank You

